若n为正整数,观察下列各式:①11×3=12(1−13);②13×5=12(13−15);③15×7=12(15−17)…根据观察计算并填空:(1)11×3+13×5+15×7=______(2)11×3+13×5+15×7+…+1(2n−1)(2n+1)=______.

问题描述:

若n为正整数,观察下列各式:

1
1×3
1
2
(1−
1
3
);②
1
3×5
1
2
(
1
3
1
5
)
;③
1
5×7
1
2
(
1
5
1
7
)

根据观察计算并填空:
(1)
1
1×3
+
1
3×5
+
1
5×7
=______
(2)
1
1×3
+
1
3×5
+
1
5×7
+
+
1
(2n−1)(2n+1)
=______.

(1)

1
1×3
+
1
3×5
+
1
5×7
=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
)=
1
2
×
6
7
=
3
7

(2)原式=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n−1
-
1
2n+1
)=
1
2
×
2n+1−1
2n+1
=
n
2n+1

故答案是
3
7
n
2n+1

答案解析:根据题意可知:
1
(2n−1)(2n+1)
=
1
2
1
2n−1
-
1
2n+1
),据此展开,再正负抵消可求值.
考试点:分式的加减法.
知识点:本题考查了分式的加减法,解题的关键是找出运算规律,即
1
(2n−1)(2n+1)
=
1
2
1
2n−1
-
1
2n+1
).