若n为正整数,观察下列各式:①11×3=12(1−13);②13×5=12(13−15);③15×7=12(15−17)…根据观察计算并填空:(1)11×3+13×5+15×7=______(2)11×3+13×5+15×7+…+1(2n−1)(2n+1)=______.
问题描述:
若n为正整数,观察下列各式:
①
=1 1×3
(1−1 2
);②1 3
=1 3×5
(1 2
−1 3
);③1 5
=1 5×7
(1 2
−1 5
)…1 7
根据观察计算并填空:
(1)
+1 1×3
+1 3×5
=______1 5×7
(2)
+1 1×3
+1 3×5
+…+1 5×7
=______. 1 (2n−1)(2n+1)
答
(1)
+1 1×3
+1 3×5
=1 5×7
(1-1 2
+1 3
-1 3
+1 5
-1 5
)=1 7
×1 2
=6 7
;3 7
(2)原式=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n−1
)=1 2n+1
×1 2
=2n+1−1 2n+1
.n 2n+1
故答案是
;3 7
.n 2n+1
答案解析:根据题意可知:
=1 (2n−1)(2n+1)
(1 2
-1 2n−1
),据此展开,再正负抵消可求值.1 2n+1
考试点:分式的加减法.
知识点:本题考查了分式的加减法,解题的关键是找出运算规律,即
=1 (2n−1)(2n+1)
(1 2
-1 2n−1
).1 2n+1