把一个横截面是正方形的长方体木料切削成一个最大的圆柱,此圆柱的表面积是32.97平方厘米,底面直径与高的比是1:3,原长方体的表面积是多少平方厘米?
问题描述:
把一个横截面是正方形的长方体木料切削成一个最大的圆柱,此圆柱的表面积是32.97平方厘米,底面直径与高的比是1:3,原长方体的表面积是多少平方厘米?
答
设长方体的横截面的边长为x厘米,则长方体的高为3x厘米,则最大圆柱的底面直径是x厘米,高是3x厘米,所以:
3.14×(
)2×2+3.14x×3x=32.97,x 2
1.57x2+9.42x2=32.97,
10.99x2=32.97,
x2=3;
则长方体的表面积为:(3x×x+3x×x+x×x)×2,
=(3x2+3x2+x2)×2,
=7x2×2,
=14x2,
=14×3,
=42(平方厘米);
答:这个长方体的表面积是42平方厘米.
答案解析:长方体木料切削成一个最大的圆柱,则这个圆柱的底面直径等于横截面的边长,圆柱的高等于长方体的高,由此设长方体的横截面的边长为x厘米,则长方体的高为3x厘米,根据圆柱的表面积公式可得关于x的方程,求得x的值再利用长方体的表面积公式解答.
考试点:简单的立方体切拼问题;长方体和正方体的表面积;圆柱的侧面积、表面积和体积.
知识点:抓住长方体内最大的圆柱的特点即可解答,此题中求出x2为等量代换的值是解决问题的关键.