3sin²a+2sin²b=2sin a,则sin²a+sin²b的取值范围是?
问题描述:
3sin²a+2sin²b=2sin a,则sin²a+sin²b的取值范围是?
答
2sina^2+2sinb^2 = 2sina-sina^2 = -(sina-1)^2 +1 因为sina在[-1,1]范围内,所以-(sina-1)^2 +1 在[-3,1]范围,所以sina^2+sin^b取植范围为[-3/2,1/2]
答
因为3sin²a+2sin²b=2sin a,即有2sin²a+2sin²b=2sin a-sin²a,
于是sin²a+sin²b=sin a-(sin²a)/2=-(sina-1)²/2+1/2
所以sin²a+sin²b的取值范围是【-1/2,1/2]