如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.
问题描述:
如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.
答
∵AB∥CD,
∴∠1=∠AEG.
∵EG平分∠AEF,
∴∠1=∠GEF,∠AEF=2∠1.
又∵∠AEF+∠2=180°,
∴∠2=180°-2∠1=180°-80°=100°.
答案解析:根据平行线的性质“两直线平行,内错角相等”,再利用角平分线的性质推出∠2=180°-2∠1,这样就可求出∠2的度数.
考试点:平行线的性质;对顶角、邻补角.
知识点:两条平行线被第三条直线所截,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.