答
(1)连接AG.
∵∠DAB=∠CAE,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中,,
∴△ADC≌△ABE(SAS),
∴DC=BE,∠ADC=∠ABE.AD=AB.
∵G、F分别是DC与BE的中点,
∴DG=DC,BF=BE,
∴DG=BF.
在△ADG和△ABF中,,
∴△ADG≌△ABF(SAS),
∴AG=AF,∠DAG=∠BAF,
∴∠AGF=∠AFG,∠DAG-∠BAG=∠BAF-∠BAG,
∴∠DAB=∠GAF.
∵∠DAB=60°,
∴∠GAF=60°.
∵∠GAF+∠AFG+∠AGF=180°,
∴∠AFG=60°;
(2)∵∠DAB=90°,∠DAB=∠GAF,(已证)
∴∠GAF=90°,
∵AG=AF,
∴∠AFG=(180°-90°)=45°;
(3)∵∠DAB=α,∠DAB=∠GAF,(已证)
∴∠GAF=α,
∵AG=AF,
∴∠AFG=(180°-α);
故答案为 60°,45°,(180°-α).
答案解析:(1)连接AG.易证△ADC≌△ABE,可得DC=BE,∠ADC=∠ABE,AD=AB,根据G、F分别是DC与BE的中点,可得DG=BF,即可证明△ADG≌△ABF,可得AG=AF,∠DAG=∠BAF,即可求得∠DAB=∠GAF,即可解题.
(2)根据(1)中结论即可求得∠AFG的值,即可解题;
(3)根据(1)中结论即可求得∠AFG的值,即可解题.
考试点:全等三角形的判定与性质.
知识点:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADC≌△ABE和△ADG≌△ABF是解题的关键.