求最小正周期f(x)=sin(2x+π/3)-根号3sin平方x+sinxcosx+(根号3)/2
问题描述:
求最小正周期
f(x)=sin(2x+π/3)-根号3sin平方x+sinxcosx+(根号3)/2
答
f(x)=sin(2x+π/3) -√3sin²x+sinxcosx+√3/2=sin2xcos(π/3)+cos2xsin(π/3)-√3sin²x+sinxcosx+√3/2=(1/2)sin2x +(√3/2)cos2x-√3sin²x+sinxcosx+√3/2=sinxcosx+√3cos²x-√3/2-√3sin...