∫(x+1)dx/(x²+xlnx)=
问题描述:
∫(x+1)dx/(x²+xlnx)=
∫(x+1)dx/(x²+xlnx) (提示:令t=lnx)
泰勒公式我还没学过
答
又是只要认真观察就很简单了……
认真观察呀!
令t=lnx,原式=∫(e^t+1)dt/(e^t+t)
注意到:d(e^t+t)=(e^t+1)dt,所以只要令y=e^t+t,
原式= ∫dy/y=lny+c
把y替换为x:
ln(lnx+x)+c