f(x)=㏑x-a×a×x×x+ax(a∈R) (1)当a=1,证明方程f(x)=0 有且仅有一个

问题描述:

f(x)=㏑x-a×a×x×x+ax(a∈R) (1)当a=1,证明方程f(x)=0 有且仅有一个
f(x)=㏑x-a×a×x×x+ax(a∈R)
(1)当a=1,证明方程f(x)=0 有且仅有一个实数根.
(2)若函数f(x)在区间1到正无穷上是减函数,求实数a的取值范围

1)a=1,f(x)=lnx-x^2+x
定义域为x>0
f'(x)=1/x-2x+1=-(2x^2-x-1)/x=-(2x+1)(x-1)/x
在定义域内只有一个极值点x=1,且为极大值点
又f(1)=0,因此f(x)只有一个零点,就是x=1.
2)f'(x)=1/x-2a^2x+a=-(2a^2x-ax-1)/x=-(2ax+1)(x-1)/x
在x>1上是减函数,则当x>1时,f‘(x)得(2ax+1)(x-1)>=0
因x>1,所以得2ax+1>=0
即a>=-1/(2x)
而-1/2因此得a>=0����Ϊlnx�Ķ�����Ϊx>0