lim(x∧2/x∧2-1)∧x x趋近与无穷 怎么求
问题描述:
lim(x∧2/x∧2-1)∧x x趋近与无穷 怎么求
.
分母是x平方后减1
答
x∧2/(x∧2-1)=(x∧2-1+1)/(x∧2-1)=1+1/(x∧2-1)则lim(x∧2/x∧2-1)∧x=lim[1+1/(x∧2-1)]^x=lim[1+1/(x∧2-1)]^[(x^2-1)]^x/(x^2-1)当x→∞时,lim[1+1/(x∧2-1)]^[(x^2-1)]=e,则原式=lime^x/(x^2-1)...十分感谢,再帮我解决几道好吗?lim(3∧n-2∧n)/(3∧n+1-2∧n+1)(3∧n-2∧n)/(3∧n+1-2∧n+1)=(3∧n-2∧n)/(3*3^n-2*2^n)分子分母同除以3^n,
则原式=[1-(2/3)^n]/(3-(2/3)^n]
当n→+∞时,lim(2/3)^n=0
所以lim(3∧n-2∧n)/(3∧n+1-2∧n+1)=1/3