如图,在△ABC中,AB=BC,BD是中线,过点D作DE∥BC,过点A作AE∥BD,AE与DE交于点E. 求证:四边形ADBE是矩形.

问题描述:

如图,在△ABC中,AB=BC,BD是中线,过点D作DE∥BC,过点A作AE∥BD,AE与DE交于点E.
求证:四边形ADBE是矩形.

证明:∵D是AC的中点,
∴AD=CD,(1分)
∵AE∥BD,DE∥BC,
∴∠EAD=∠BDC,∠ADE=∠DCB,(2分)
∴△ADE≌△DCB,
∴AE=DB,(2分)
∴四边形ADBE是平行四边形,(2分)
∵AB=CB,
∴BD⊥AC即∠ADB=90°,(1分)
∴平行四边形ADBE是矩形.(2分)