若方程8x +2kx+k-1=0的两个实数根是x1 ,x 2且满足x 1^2+x2^2 =1,则k的值为( ).A.-2或6 B.-2 C.6 D.4

问题描述:

若方程8x +2kx+k-1=0的两个实数根是x1 ,x 2且满足x 1^2+x2^2 =1,则k的值为( ).A.-2或6 B.-2 C.6 D.4

由韦达定理,得
x1+x2=-k/4
x1x2=(k-1)/8
x1^2+x2^2
=(x1+x2)^2-2x1x2
=k^2/16-(k-1)/4
=(k^2-4k+4)/16
=(k-2)^2/16=1
(k-2)/4=1或(k-2)/4=-1
k=6或k=-2
k=6代回去验证:8x^2+12x+5=0,判别式k=-2代回去验证:8x^2-4x-3=0,方程有解.
选B