设数列{an}是首项为m,公比为q(q≠1)的等比数列,Sn是他的前n项和,对任意n∈N,点(an,S2n/Sn)
问题描述:
设数列{an}是首项为m,公比为q(q≠1)的等比数列,Sn是他的前n项和,对任意n∈N,点(an,S2n/Sn)
A.在直线mx+qy=0上
B.在直线qx-my+m=0上
C.在直线qx+my-q=0上
D.不一定在一条直线上
答
Sn=m(1-q^n)/(1-q)
S2n=m(1-q^2n)/(1-q)
S2n/Sn=(1-q^2n)/(1-q^n)=(1+q^n)(1-q^n)/(1-q^n)=1+q^n
an=mq^(n-1)
qx-my+m
=q*[mq^(n-1)]-m(1+q^n)+m
=mq^n-m0mq^n+m
=0
所以,点(an,S2n/Sn),即点(mq^(n-1),1+q^n)在直线qx-my+m=0上,选B.
.