在△abc中,角A,B,C所对的边分别为a,b,c,且满足,c=√3/2,3tanA+B/2=2sinC,求角C大小,求a+b的取值范围.
问题描述:
在△abc中,角A,B,C所对的边分别为a,b,c,且满足,c=√3/2,3tanA+B/2=2sinC,求角C大小,求a+b的取值范围.
答
3tan(A+B)/2=2sinC,
3tan[(180-C)/2]=2sinC
3cot(C/2)=2sinC
3cos(C/2)/sin(C/2)-4sin(C/2)cos(C/2)=0
cos(C/2)[3/sin(C/2)-4sin(C/2)=0
又C