f(x)=2cos^2x+2sinxcosx+1.(1)x属于【派/24,7派/24】时,求f(x)的最值.(2)f(a/2)=11/5,a属于(0,派),求sin2a(要有过程喔,)
问题描述:
f(x)=2cos^2x+2sinxcosx+1.(1)x属于【派/24,7派/24】时,求f(x)的最值.(2)f(a/2)=11/5,a属于(0,派),求sin2a(要有过程喔,)
答
(1)f(x)=2cos²x+2sinxcosx+1
=2×(cos2x+1)/2+sin2x+1
=cos2x+sin2x+2
=√2(√2/2 cos2x+√2/2 sin2x)+2
=√2sin(2x+π/4)+2
∵x∈(π/24,7π/24)
∴ π/12 ﹤ 2x﹤7π/12
π/3 ﹤2x+π/4﹤5π/6
∴ 1/2 ﹤ sin(2x+π/4)﹤1
∴ √2 /2 +1﹤ f(x)﹤√2+2
(2)∵f(a/2)=11/5
∴f(a/2) =√2sin(a+π/4)+2=11/5
∴sin(a+π/4)=√2/10
√2/2 cosa+√2/2 sina=√2/10
sina+cosa=1/5
(sina+cosa)²=1/25
sin²a+2sinacosa+cos²a=1/25
1+sin2a=1/25
∴sin2a=-24/25