设函数fx在点x处可导,求下列极限.limf(x+αh)-f(x-βh)/h,(α,β均是常数)
问题描述:
设函数fx在点x处可导,求下列极限.limf(x+αh)-f(x-βh)/h,(α,β均是常数)
答
lim(h→0)[f(x+αh)-f(x-βh)]/h = lim(h→0)[f(x+αh)-f(x)]/h + lim(h→0)[f(x)-f(x-βh)]/h = α*lim(h→0)[f(x+αh)-f(x)]/(αh) + β*lim(h→0)[f(x-βh)-f(x)]/(-βh) = α*f'(x) + β*f'(x) = ...感谢可踩否?已踩您的踩是对回答者的最大鼓励!