已知数列{an}满足:a1=1,[a(n+1)=(1/2)an+n,n为奇数 an-2n,n为偶数 ] 1.设bn=a(2n+1)+4n-2,n∈N求证:数列{bn}是等比数列,并求其通项公式.2.求数列{an}的前100项中,所有奇数项的

问题描述:

已知数列{an}满足:a1=1,[a(n+1)=(1/2)an+n,n为奇数 an-2n,n为偶数 ] 1.设bn=a(2n+1)+4n-2,n∈N求证:数列{bn}是等比数列,并求其通项公式.2.求数列{an}的前100项中,所有奇数项的和s

bn=a(2n+1)+4n-2
b(n+1)=a(2n+3)+4n+2
=a(2n+2)-2(2n+2)+4n+2
=1/2a(2n+1)+2n-1
=1/2[a(2n+1)+4n-2]
∴b(n+1)/bn=1/2
∴数列{bn}是等比数列,公比为1/2
b1=a3+2=a2-4+2=1/2a1+1-2=-1/2
bn=-(1/2)^n
2
∵bn=a(2n+1)+4n-2
∴a(2n+1)=bn-4n+2=-1/2^n-4n+2
S=a1+a3+a5+.+a99
=1+(-1/2-1/4-1/8-...-1/2^49)-4(1+2+3+...+49)+2·49
=1-(1-1/2^49)-2*49*50+98
= 1/2^49-4802