已知向量a(-2,5)向量b(4,0)向量c(1,-2)向量d=ma+nb 若c向量与d向量夹角为arctan2,求m/n的值

问题描述:

已知向量a(-2,5)向量b(4,0)向量c(1,-2)向量d=ma+nb 若c向量与d向量夹角为arctan2,求m/n的值

设=α,tanα=2,cosα=1/√5,C=(1,-2), d=m(-2,5)+n(4,0)=(-2m+4n,5m)cosα=c*d/|c|*| d|, (1/√5)^2=(-2m+4n-10m)^2/|c|^2*|d|^2 |c|^2=5, |d|^2=(-2m+4n)^2+(5m)^2=29m^2+16n^2-16mn...