设x1,x2是方程2x^2-11x+10=0的两根,则x1,x2的等差中项和等比中项分别是?
问题描述:
设x1,x2是方程2x^2-11x+10=0的两根,则x1,x2的等差中项和等比中项分别是?
答
x1,x2是方程2x^2-11x+10=0的两根
∴x1+x2=11/2=5.5
x1·x2=10/2=5
∴x1,x2的等差中项是5.5/2=2.75
x1,x2的等比中项是±√5
答
根据韦达定理可得:
x1+x2=11/2
所以可得:x1,x2的等差中项为:11/4
x1x2=5
所以可得:x1,x2的等比中项为:±√5