试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x^3),其中ο(x^3)是当x→0时试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x^3),其中ο(x^3)是当x→0时高阶无穷小量
问题描述:
试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x^3),其中ο(x^3)是当x→0时
试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x^3),其中ο(x^3)是当x→0时高阶无穷小量
答
当x→0时,将e^x(1+Bx+Cx^2)展开,利用和1+Ax+ο(x^3)的等价无穷小,比较x的系数可得:
A=1,B=0,C=1.