log(2)(3x + 1) - log(2)(x+1) =0的根 是log(2)(3x + 1) - 1/2log(2)(x+1) =0,不好意思
问题描述:
log(2)(3x + 1) - log(2)(x+1) =0的根
是log(2)(3x + 1) - 1/2log(2)(x+1) =0,不好意思
答
原式=Log(2)[(3x+1)/(x+1)]=0 所以(3x+1)/(x+1)=1 即 3x+1=x+1 所以 x=0
答
log(2)(3x + 1) - log(2)(x+1) =0
log(2)[(3x + 1) /(x+1) ]=0
[(3x + 1) /(x+1) ]=1
(3x + 1)=(x+1)
x=0
答
已修改log(2)(3x + 1) - 1/2log(2)(x+1) =0log(2)(3x + 1) = 1/2log(2)(x+1) 2log(2)(3x + 1) = log(2)(x+1) log(2)(3x + 1)^2= log(2)(x+1) (3x + 1)^2=(x+1) X1=0 X2=-5/9(舍去(使3x + 1>0))...
答
log(2)(3x + 1) - log(2)(x+1) =0
log(2)[(3x+1)/(x+1)]=0
∴(3x+1)/(x+1)=1
x=0