用数学归纳法证明:1-3+5-7+...(-1)^n-1(2n-1)=(-1)^(n-1)*n时,第二步从设n=k成立到证明n=k+1成立要证明的式子是
问题描述:
用数学归纳法证明:1-3+5-7+...(-1)^n-1(2n-1)=(-1)^(n-1)*n时,第二步从设n=k成立到证明n=k+1成立
要证明的式子是
答
解假设n=k命题成立
即1-3+5-7+...(-1)^(k-1)(2k-1)=(-1)^(k-1)*k
那么当n=k+1时,
1-3+5-7+...(-1)^(k-1)(2k-1)+(-1)^(k)(2(k+1)-1)
=1-3+5-7+...(-1)^(k-1)(2k-1)+(-1)^(k)(2k+1)
=(-1)^(k-1)*k+(-1)^(k)(2k+1)
=(-1)^(k-1)*k+(-1)^(k-1)*(-1)^(1)(2k+1)
=(-1)^(k-1)*k+(-1)^(k-1)*(-2k-1)
=(-1)^(k-1)[k+(-2k-1)]
=(-1)^(k-1)[-k-1]
=(-1)^(k-1)(-1)^(1)[k+1]
=(-1)^(k)(k+1)