等差数列{an}的前n项和为Sn,且S4=20,Sn-4=60,Sn=120,则n=______.

问题描述:

等差数列{an}的前n项和为Sn,且S4=20,Sn-4=60,Sn=120,则n=______.

由于S4=20,Sn-4 -S4 =60-S4 =40,Sn-Sn-4=60,
∴S4,Sn-4-S4 ,Sn-Sn-4 成等差数列,由于等差数列每4项的和也成等差数列,∴n=12,
故答案为:12.
答案解析:由于S4=20,Sn-4 -S4 =60-S4 =40,Sn-Sn-4=60,故S4,Sn-4-S4 ,Sn-Sn-4 成等差数列,
由于等差数列每4项的和也成等差数列,可得n=12.
考试点:等差数列的性质.
知识点:本题考查等差数列的定义和性质,得到S4,Sn-4-S4 ,Sn-Sn-4 成等差数列,是解题的关键.