如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.(1)快艇从港口B到小岛C需要多少时间?(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?
问题描述:
如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.
(1)快艇从港口B到小岛C需要多少时间?
(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?
答
知识点:此题考查学生对方向角的理解及解直角三角形的综合计算能力,难易程度适中.
(1)由题意可知:∠CBO=60°,∠COB=30度.∴∠BCO=90度.在Rt△BCO中,∵OB=120,∴BC=60,OC=603.∴快艇从港口B到小岛C的时间为:60÷60=1(小时).(2)设快艇从C岛出发后最少要经过x小时才能和考察船在OA上的...
答案解析:(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间.
(2)过C作CH⊥OA,垂足为H.设快艇从C岛出发后最少要经过x小时才能和考察船在OA上的D处相遇,则CD=60x,OD=20(x+2).根据直角三角形的性质可解得x的值,从而求得快艇从小岛C出发后和考察船相遇的最短的时间.
考试点:解直角三角形的应用-方向角问题.
知识点:此题考查学生对方向角的理解及解直角三角形的综合计算能力,难易程度适中.