答
(1)由题意可知:∠CBO=60°,∠COB=30度.
∴∠BCO=90度.
在Rt△BCO中,
∵OB=120,
∴BC=60,OC=60.
∴快艇从港口B到小岛C的时间为:60÷60=1(小时).
(2)设快艇从C岛出发后最少要经过x小时才能和考察船在
OA上的D处相遇,则CD=60x.
过点D作DE⊥CO于点E,
∵考察船与快艇是同时出发,
∵快艇从港口B到小岛C的时间是1小时,在小岛C用1小时装补给物资,
∴考察船从O到D行驶了(x+2)小时,
∴OD=20(x+2).
过C作CH⊥OA,垂足为H,
在△OHC中,
∵∠COH=30°,OB=120,
∴CO=60,
∴CH=30,OH=90.
∴DH=OH-OD=90-20(x+2)=50-20x.
在Rt△CHD中,CH2+DH2=CD2,
∴(30
)2+(50-20x)2=(60x)2.
整理得:8x2+5x-13=0.
解得:x1=1,x2=-.
∵x>0,
∴x=1.
答:快艇从小岛C出发后最少需要1小时才能和考察船相遇.
答案解析:(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间.
(2)过C作CH⊥OA,垂足为H.设快艇从C岛出发后最少要经过x小时才能和考察船在OA上的D处相遇,则CD=60x,OD=20(x+2).根据直角三角形的性质可解得x的值,从而求得快艇从小岛C出发后和考察船相遇的最短的时间.
考试点:解直角三角形的应用-方向角问题.
知识点:此题考查学生对方向角的理解及解直角三角形的综合计算能力,难易程度适中.