证明:log(a)bXlog(b)cXlog(c)a=1
问题描述:
证明:log(a)bXlog(b)cXlog(c)a=1
答
loga(b)*logb(c)*logc(a)=(lnb/lna)(lnc/lnb)(lnc/lna)=1
答
你是高一的吧··?
你说的这道题目很简单啊·
应该是书上P75页的第11题的第二小问吧·、?
答
log(a)bXlog(b)cXlog(c)a
=lgb/lga*lgc/lgb*lga/lgc
=1