已知等腰三角形ABC的底边长BC=20,D是AB上的点.且CD=16,AD=12,求三角形ABC的面积?
问题描述:
已知等腰三角形ABC的底边长BC=20,D是AB上的点.且CD=16,AD=12,求三角形ABC的面积?
答
BD=AD=12
BD平方+CD平方=400=BC平方
所以CD垂直于AB
面积=AD*CD=12*16=192
答
设底边中点为E,连接AE,则三角形AED为直角三角形,ED=6
根据勾股定理,AE=(12^2-6^2)^0.5=108^0.5=3*12^0.5
三角形ABC面积=0.5*20*3*12^0.5=30*12^0.5=103.92