设椭圆方程为x^2/a^2+y^2/b^2=1(a>b>0),PQ是过左焦点F且与x轴不垂直的弦,若在左右准线l上存在点R,使△PQR为正三角形,则椭圆离心率e的取值范围是?

问题描述:

设椭圆方程为x^2/a^2+y^2/b^2=1(a>b>0),PQ是过左焦点F且与x轴不垂直的弦,若在左右准线l上存在点R,使△PQR为正三角形,则椭圆离心率e的取值范围是?

(三分之根号三,1)