y=sin4x+cos²x的最小正周期为
问题描述:
y=sin4x+cos²x的最小正周期为
π/2,4指4次方,求详解
答
两种解法:
法一:Y=sin^2x(1-cos^2x)+cos^2x
=sin^2x-sin^2xcos^2x+cos^2x
=sin^2x+cos^2x-sin^2xcos^2x=1-(sinxcosx)^2=1-(1/2sin2x)^2=1-1/4(sin2x)^2
=1-(1/4)*(1-cos4x)/2=1-1/8(1-cos4x) =7/8+1/8cos4x (因为(sin2x)^2=(1-cos4x)/2)
最小正周期是2π/4= 1/2 π
法二:Y=sin^4x+cos^2x =(sin²x)²-sin²x+1 =[sin²x-1/2]²+3/4 =(1/4)cos²2x+3/4=7/8+1/8cos4x (因为(cos2x)^2=(1+cos4x)/2 )
最小正周期是2π/4= 1/2 π