∫[(2x)/(x2+1)]dx=?

问题描述:

∫[(2x)/(x2+1)]dx=?

记g(x)=f(x^2+sin^2x)+f(arctanx)=y
g'(x)=f'(x^2+sin^2x)(2x+sin2x)+f'(arctanx)/(x2+1)
dy/dx|x=0,即g'(0)
代入得:g'(0)=1