如图,在△ABC中,∠BAC=90°,AB=AC,E、F分别是BC上两点,若∠EAF=45°,试推断BE、CF、EF之间的数量关系,并说明理由.

问题描述:

如图,在△ABC中,∠BAC=90°,AB=AC,E、F分别是BC上两点,若∠EAF=45°,试推断BE、CF、EF之间的数量关系,并说明理由.

BE、CF、EF之间的数量关系为:EF2=BE2+FC2
理由如下:
∵∠BAC=90°,AB=AC,
∴将△ABE绕点A顺时针旋转90°得△ACG,
连FG,如图,
∴AG=AE,CG=BE,∠1=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠1=∠ACB+∠B=90°,
∴FG2=FC2+CG2=BE2+FC2
又∵∠EAF=45°,而∠EAG=90°,
∴∠GAF=90°-45°=45°,
而AG=AE,AF公共,
∴△AGF≌△AEF,
∴FG=EF,
∴EF2=BE2+FC2