Sn=1+1/2+1/3+.+1/n,f(n)=S2n+1-Sn+1,求f(n)>log2(m-1)-log(m-1)2恒成立,m的取值范围

问题描述:

Sn=1+1/2+1/3+.+1/n,f(n)=S2n+1-Sn+1,求f(n)>log2(m-1)-log(m-1)2恒成立,m的取值范围

S(2n+1)=1+1/2+1/3+.+1/(2n+1) S(n+1)=1+1/2+1/3+.+1/(n+1) f(n)=1/(n+2)+1/(n+3)+……+1/(2n+1) f(n+1)=1/(n+3)+……+1/(2n+1)+1/(2n+2)+1/(2n+3) f(n+1)-f(n)=1/(2n+2)+1/(2n+3)-1/(n+2) >1/(2n+2)+1/(2n+3)-2/(2n...