已知圆(X+1)^2+Y^2=1 和圆外一点p(0,2) 过点p作圆的切线,则两条切线的夹角是

问题描述:

已知圆(X+1)^2+Y^2=1 和圆外一点p(0,2) 过点p作圆的切线,则两条切线的夹角是

依题意,可知圆圆心为(-1,0),半径为1,设圆心为O,交点分别为A和B,则OP=√((-1-0)^2+(0-2)^2)=√5在Rt△OAP中,sin∠OPA=OA/OP=√5/5,由勾股定理,可得cos∠OPA=(2√5)/5在△APB中,AP,BP为和圆外一点p(0,2) 过点p作...