若方程8x2+2kx+k-1=0的两个实数根是x1,x2且满足x12+x22=1,则k的值为(  ) A.-2或6 B.-2 C.6 D.4

问题描述:

若方程8x2+2kx+k-1=0的两个实数根是x1,x2且满足x12+x22=1,则k的值为(  )
A. -2或6
B. -2
C. 6
D. 4

∵方程8x2+2kx+k-1=0的两个实数根是x1,x2,∴x1+x2=-2k8=-k4,x1x2=k−18,4k2-4×8×(k-1)≥0,∴x12+x22=(x1+x2)2-2x1x2=(−k4)2-2×k−18=k216-k−14,又x12+x22=1,∴k216-k−14=1,解得:k=6或-2,又4k2-4...