正方体内切求和外切球的半径比为什么是1:√3

问题描述:

正方体内切求和外切球的半径比为什么是1:√3

内切圆的半径为正方体棱长的一半
外界圆的半径为体对角线的一半
如果棱长为a,则体对角线的长度为(a^2+a^2+a^2)^(1/2)=√3 *a
所以为1:√3