abc为正实数,求证sqr(a^2+b^2)+sqr(b^2+c^2)+sqr(c^2+a^2)>=sqr(2)(a+b+c)
问题描述:
abc为正实数,求证sqr(a^2+b^2)+sqr(b^2+c^2)+sqr(c^2+a^2)>=sqr(2)(a+b+c)
rt
答
暂无优质回答,请稍候...
abc为正实数,求证sqr(a^2+b^2)+sqr(b^2+c^2)+sqr(c^2+a^2)>=sqr(2)(a+b+c)
rt
暂无优质回答,请稍候...