求微积分x=(y'')^2+1
问题描述:
求微积分x=(y'')^2+1
答
解微分方程x=(y'')²+1y''=±√(x-1);故y'=±∫√(x-1)dx=±(2/3)(x-1)^(3/2)+C₁;∴y=±(2/3)∫(x-1)^(3/2)dx+C₁∫dx=±(4/15)(x-1)^(5/2)+C₁x+C₂.即该方程的通解为y=±(4/15)(x-1)^(...