如图,P是⊙O的半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长交⊙O于K,连接KO,OD. (1)证明:PC=PD; (2)若该圆半径为5,CD∥KO,请求出OC的长.
问题描述:
如图,P是⊙O的半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长交⊙O于K,连接KO,OD.
(1)证明:PC=PD;
(2)若该圆半径为5,CD∥KO,请求出OC的长.
答
(1)证明:如图,∵PD=PO,
∴∠1=∠2;
∵CD是⊙O的切线,
∴CD⊥OD.(2分)
∴∠3+∠1=90°;
又∵∠CDP+∠2=90°,
∴∠3=∠CDP.(3分)
∴PC=PD.(4分)
(2)∵CD∥KO,有∠3=∠POK,
由(1)得,CP=PD=PO,又∠CPD=∠KPO,
∴△CPD≌△OPK
∴CD=OK=5;
在Rt△COD中,OC=
=5
CD2+OD2
.(8分)
2