设x,y均为正数,且x>y,求证:2x+1/x2-2xy+y2≥2y+3.
问题描述:
设x,y均为正数,且x>y,求证:2x+
≥2y+3.1
x2-2xy+y2
答
证明:由题设x>y,可得x-y>0;
∵2x+
-2y=2(x-y)+1
x2-2xy+y2
=(x-y)+(x-y)+1 (x-y)2
;1 (x-y)2
又(x-y)+(x-y)+
≥31 (x-y)2
=3,当x-y=1时取“=“;
3
(x-y)2
1 (x-y)2
∴2x+
-2y≥3,即2x+1
x2-2xy+y2
≥2y+3.1
x2-2xy+y2