设x,y均为正数,且x>y,求证:2x+1/x2-2xy+y2≥2y+3.

问题描述:

设x,y均为正数,且x>y,求证:2x+

1
x2-2xy+y2
≥2y+3.

证明:由题设x>y,可得x-y>0;
∵2x+

1
x2-2xy+y2
-2y=2(x-y)+
1
(x-y)2
=(x-y)+(x-y)+
1
(x-y)2

又(x-y)+(x-y)+
1
(x-y)2
≥3
3 (x-y)2
1
(x-y)2
=3
,当x-y=1时取“=“;
∴2x+
1
x2-2xy+y2
-2y≥3,即2x+
1
x2-2xy+y2
≥2y+3.