有点难的函数题

问题描述:

有点难的函数题
已知f(x)对任意x、y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2/3.
(1)求证:f(x)为R上的减函数,
(2)求f(x)在[-3,3]上的最大值与最小值

(1)证.令x=y=0,则有f(0)+f(0)=f(0)即f(0)=0
令y=-x,则有f(x)+f(-x)=f(0)=0即f(x)=-f(-x),则f(x)是个奇函数
设x1>x2,则x1-x2>0
则有f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)