cos[(k-1)π-α]=cos[(k+1)π+α]=-cos(kπ+α)

问题描述:

cos[(k-1)π-α]=cos[(k+1)π+α]=-cos(kπ+α)
sin[(k+1)π+α]=-sin(kπ+α) 上述两个式子为什么相等 刚学这部分 还不太懂.

这可以用诱导公式来证明cos[(k-1)π-α]=cos[(k+1)π+α]=-cos(kπ+α) ∵cos(π+α)=-cos(α)∴cos[(kπ+π+α]=-cos(kπ+α) ∵cos(2π+α)=cos(α)cos[(k-1)π+2π-α]=cos[(k+1)π-α]=]=-cos(kπ+α) ∴co...