两个数列{An}{Bn}中,An>0,Bn>0,且An,Bn^2,An+1成等差数列,且Bn^2,An+1,Bn+1^2,成等比数列.问题(1)证明{Bn}是等差数列?问题(2)若A2=3A1=3,求lim (B1+B2+…Bn)/An的值?
问题描述:
两个数列{An}{Bn}中,An>0,Bn>0,且An,Bn^2,An+1成等差数列,且Bn^2,An+1,Bn+1^2,成等比数列.
问题(1)证明{Bn}是等差数列?
问题(2)若A2=3A1=3,求lim (B1+B2+…Bn)/An的值?
答
1:
因为:An,Bn^2,An+1成等差数列;
所以:An+1-An=2Bn^2;(1)
因为:Bn^2,An+1,Bn+1^2,成等比数列.
所以:(Bn+1^2)*(Bn^2)=(An+1)^2;
因为:An>0,Bn>0
所以:(Bn+1)*Bn=An+1;(2)
所以:Bn*Bn-1=An;(3);
将(2)(3)代入(1)得:
Bn(Bn+1-Bn-1)=2Bn^2;
所以:Bn+1-Bn-1=2Bn; Bn+1-Bn=Bn-Bn-1;
所以{Bn}是等差数列;命题得证;
2:
A2=3A1=3;得:A1=1;A2=3;代入(1)式得:
A2-A1=2B1^2;得B1=1;
将A2=3;B1=1代入(3)式得:
B2*B1=A2;得:B2=2;
由1所证{Bn}为等差数列,所以公差为B2-B1=1;
所以{Bn}的通项为Bn=n;
将Bn=n;Bn-1=n-1;代入(3)式得:
An=n*(n-1);
所以:lim (B1+B2+…Bn)/An=lim (1+2+3+...+n)/[n(n-1)]=lim1/2(n+1)/n-1)
=lim1/2+1/n-1=1/2;
l所以:im (B1+B2+…Bn)/An=1/2;