1³+2³+3³+4³+……+99³+100³=?
1³+2³+3³+4³+……+99³+100³=?
大致算了下答案为42967925.这种题要找规律,我们先算1³+100³,由于a³+b³=(a+b)(a²+b²-ab),所以1³+100³=(1+100)(1²+100²-1×100),所以我们可以分为50组再把他们相加,(1³+100³)(2³+99)+。。。。+(50³+51³),也就是说a³+b³=(a+b)(a²+b²-ab),里面的(a+b)都是为101,再看后半部分(a²+b²-ab),最后会是1²+2²+3²+。。。+100²—(1×100+2×99+3×98..。。+50×51),由于1²+2²+3²+。。+n²=n*(n + 1)*(2n + 1)/6,所以1²+2²+3²+。。。+100²=100(100+1)(200+1)/6,而2×99+3×98+4×97+。。。+50×51=(1+1)(100-1)+(1+2)(100-2)+(1+3)(100-3)+.。。+(1+49)(100-49),这里也可以找个规律,100+100-1-1+100+200-2-2²+100+300-3-3².从2到99有49组,也就是说着结果100×49+100+300+400+500+。。+4900-(1+2+3+..+49)-(1²+2²+3²+。。+49²)=100×49+100[(1+50)×50/2]-(1+49)×49/2-49*(49+ 1)*(98 + 1)/6,。所以1³+2³+3³+4³+……+99³+100³=101{100(100+1)(200+1)/6-100-[100×49+100[(1+50)×50/2]-(1+49)×49/2-49×(49+ 1)×(98 + 1)/6}
有个公式1^3+2^3+3^3+...+n^3=[(1+n)n/2]^2代入100[(100+1)*100/2]^2=5050^2=25 502 500证明1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2=[n(n+1)/2]^2 n^4-(n-1)^4 =[n^2-(n-1)^2][n^2+(n-1)^2] =(2n-1)(2n^2-2n+1) =4n^3-...