数列{an}的前n项和为Sn,a1=1,an+1-an-1=0,数列{bn}满足b1=2,anbn+1=2an+1bn.(1)求S200;            (2)求bn.

问题描述:

数列{an}的前n项和为Sn,a1=1,an+1-an-1=0,数列{bn}满足b1=2,anbn+1=2an+1bn
(1)求S200;            (2)求bn

(1)∵{an}的前n项和为Sn,a1=1,an+1-an-1=0,∴an+1-an=1,∴数列{an}是以a1=1为首项,d=1为公差的等差数列,∴S200=200×1+200×1992×1=20100.(2)由(1)得an=n,∵数列{bn}满足b1=2,anbn+1=2an+1bn,∴nb...
答案解析:(1)由{an}的前n项和为Sn,a1=1,an+1-an-1=0,知数列{an}是以a1=1为首项,d=1为公差的等差数列,由此能求出S200
(2)由an=n,数列{bn}满足b1=2,anbn+1=2an+1bn,知nbn+1=2(n+1)bn,所以

bn+1
n+1
=2•
bn
n
,由此知{
bn
n
}是以
b1
1
=2为首项,q=2为公比的等比数列,由此能求出bn
考试点:等差数列与等比数列的综合;等比关系的确定;数列递推式.

知识点:本题考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化.