若∠1与∠2互为补角,且∠1>∠2,则∠2的余角的2倍等于(  )A. ∠1-∠2B. ∠1+∠2C. ∠1D. ∠2

问题描述:

若∠1与∠2互为补角,且∠1>∠2,则∠2的余角的2倍等于(  )
A. ∠1-∠2
B. ∠1+∠2
C. ∠1
D. ∠2

∵∠1与∠2互为补角,
∴∠1+∠2=180°,
∴∠2的余角的2倍=2(90°-∠2)=180°-2∠2=∠1+∠2-2∠2=∠1-∠2(∠1>∠2).
故选A.
答案解析:先根据补角的定义得到∠1+∠2=180°,再根据余角的定义得到∠2的余角的2倍=2(90°-∠2),然后把∠1+∠2=180°代入,整理后即可得到答案.
考试点:余角和补角.


知识点:本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角;如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.