设两个非零向量e1和e2不共线,如果向量AB=2e1+3e2,向量BC=6e1+23e2,向量CD=4e1-8e2,求证:A,B,D三点共线
问题描述:
设两个非零向量e1和e2不共线,如果向量AB=2e1+3e2,向量BC=6e1+23e2,向量CD=4e1-8e2,求证:A,B,D三点共线
答
设两个非零向量e1和e2不共线,如果向量AB=2e1+3e2,向量BC=6e1+23e2,向量CD=4e1-8e2,求证:A,B,D三点共线