(tan60°-2tan45°)分之(2sin60°-1)(tan60°-2tan45°)分之(2sin60°-1)

问题描述:

(tan60°-2tan45°)分之(2sin60°-1)
(tan60°-2tan45°)分之(2sin60°-1)

(根3-2)除以(根3-1)=(1减根3)除以2

(tan60°-2tan45°)分之(2sin60°-1)
=(2×√3/2-1)/(√3-2)
=(√3-1)/(√3-2)
=-(√3-1)(√3+2)
=-3-2√3+√3+2
=-1-√3

(2sin60°-1)/(tan60°-2tan45°)
=[2*(√3/2)-1]/(√3-2)
=(√3-1)/(√3-2)
=-(√3-1)(√3+2)/(-1) 【分母有理化】
=-3-2√3+√3+2
=-1-√3