已知双曲线3x2-y2=3,过点P(2,1)作直线l交双曲线于A,B两点.(1)求弦AB中点M的轨迹.(2)若P恰为AB中点,求l的方程.
问题描述:
已知双曲线3x2-y2=3,过点P(2,1)作直线l交双曲线于A,B两点.
(1)求弦AB中点M的轨迹.
(2)若P恰为AB中点,求l的方程.
答
(1)设A(x1,y1),B(x2,y2),M(x,y),
则3x12-y12=3,3x22-y22=3,
两式相减得3x(x1-x2)-y(y1-y2)=0,
∴
=3x y
,即3x2-y2-6x+y=0,斜率不存在时也满足,轨迹为双曲线;y−1 x−2
(2)由(1)知3x12-y12=3,3x22-y22=3,
两式相减得6(x1-x2)-(y1-y2)=0,从而直线的斜率为6,
故所求直线方程为6x-y-11=0
答案解析:(1)设A(x1,y1),B(x2,y2),M(x,y),则3x12-y12=3,3x22-y22=3,两式相减,利用M时中点及斜率相等可求M得轨迹方程,从而得到其轨迹;
(2)在(1)的基础上,利用P恰为AB中点,得直线的斜率为6,从而可求.
考试点:圆锥曲线的轨迹问题;直线与圆锥曲线的关系.
知识点:本题主要考查中点弦问题,设而不求是常用方法,应注意细细体会.