如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行______分钟可使渔船到达离灯塔距离最近的位置.

问题描述:

如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行______分钟可使渔船到达离灯塔距离最近的位置.

作MN⊥AB于N.
易知:∠MAB=30°,∠MBN=60°,
则∠BMA=∠BAM=30°.
设该船的速度为x,则BM=AB=0.5x.
Rt△BMN中,∠MBN=60°,
∴BN=

1
2
BM=0.25x.
故该船需要继续航行的时间为0.25x÷x=0.25小时=15分钟.
答案解析:过M作AB的垂线,设垂足为N.由题易知∠MAB=30°,∠MBN=60°;则∠BMA=∠BAM=30°,得BM=AB.由此可在Rt△MBN中,根据BM(即AB)的长求出BN的长,进而可求出该船需要继续航行的时间.
考试点:解直角三角形的应用-方向角问题.
知识点:本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.需注意的是单位的统一.