已知O为三角形ABC的重心,求证:OA:OB:OC=sin∠BOC:sin∠AOC:sin∠AOB

问题描述:

已知O为三角形ABC的重心,求证:OA:OB:OC=sin∠BOC:sin∠AOC:sin∠AOB

因为O为重心,所以S△AOB=S△AOC=S△BOC=1/3S△ABC,由面积公式得到 1/2OAOBsin∠AOB=1/2OAOCsin∠AOC=1/2OBOCsin∠BOC同时除以1/2OAOBOC得到 (sin∠AOB)/OC=(sin∠AOC)/OB=(sin∠BOC)/OA.即OA:OB:OC=sin∠BOC:sin∠AO...