如何证明n边形内角和公式(n-2)×180°

问题描述:

如何证明n边形内角和公式(n-2)×180°

从任意一顶点向不相邻的顶点连线,n边形可以得到(n-2)个三角形,所有三角形的内角和加起来就是这个多边形的内角和,易得三角形的内角和是180,所以n边形内角和公式(n-2)×180°。
方法二:内部任选一点,向所有顶点连线,得到n个三角形,多边形内角和=n个三角形内角和-360(就是所选那点为顶点的所有角之和)=(n-2)×180

证法一:如图D27-1-2,在n边形内任取一点O,连结O与各个顶点的线段,把n边形分成n个三角形.因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°,所以n边形的内角和是n·180°-2×180°=(n-2)·180°.
∴n边形的内角和等于(n-2)×180°.
证法二:如图D27-1-3,过多边形的任一顶点A1,连结点A1与各个顶点的线段,把n边形分成(n-2)个三角形.因为这(n-2)个三角形的内角和都等于(n-2)·180°,所以n边形的内角和是(n-2)×180°.
证法三:如图D27-1-4,在n边形的边A1A2边上任取一点P,连结P点与各顶点的线段可以把n边形分成(n-1)个三角形,这(n-1)个三角形的内角和等于(n-1)·180°.以P为公共顶点的(n-1)个角的和是180°,所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.

从任意一顶点向不相邻的顶点连线,n边形可以得到(n-2)个三角形,所有三角形的内角和加起来就是这个多边形的内角和,易得三角形的内角和是180,所以n边形内角和公式(n-2)×180°.方法二:内部任选一点,向所有顶点连线,...